Skip to content

Renewable Energy

Green Energy From Estuaries

by Mike Campbell 25 Apr 2011
Green Energy From Estuaries

An estuary is defined as being the mixing zone where fresh river water meets the salt water of the ocean. The penetration of salt water into the fresh river water can extend backwards from the coast for some distance. Researchers at Stanford University recently published details of a battery which uses changes in salinity to produce electricity (see Nano Lett., 2011, 11 (4), pp 1810-1813).

The device, which incorporates a Na(2-x)Mn5O10 nanorod electrode works on the basis of the difference in concentration between salt (sodium chloride) between the two environments. Initially, the electrodes are charged with sodium (cathode) and chlorine (anode) ions in a low salinity environment (this requires priming the cell with electricity). In the next stage, the fresh water empties from the cell and is replaced with seawater.

The ionic concentration of sodium and chlorine is at least sixty times higher than in freshwater and the sodium ions in it will migrate towards the cathode whilst chlorine ions migrate to the anode. The migration of ions causes the electrical potential in the battery to increase allowing more energy to be extracted from the system than was used to prime it. Once the energy in the system has been discharged, the seawater is replaced with freshwater and the process can be started again.

In laboratory experiments, Yi Cui and his team were able to demonstrate a 74% efficiency in converting the potential energy stored in the battery into electrical current, although they are optimistic that design modifications could boost this figure to 85%. The use of nanorods to form the electrodes serves to increase the effective surface area by a factor of approximately 100 over conventional materials.

The Stanford team calculated that their batteries could produce 13% of global electrical energy demand if all of the world's estuaries could be utilised. More realistically, they determined that a power station with a flow rate of 50 cubic metres per second could yield up to 100 MW - enough to supply 100 000 households with electricity.


Trending Eco-Friendly Clothing

Love My Planet Women's Relaxed Fit Hoodie
Earth
Quick Add
Close
Notify me
Notify me
Love My Planet Women's Relaxed Fit Hoodie
Love My Planet women's eco-friendly relaxed fit hoodieSize Guide Centimeters 8 10 12 14 16 18 Bust 84 88 92 97 103 108 Waist 66 70 75 80 85 91 Hips 91 95 99 104 109 116 Bust: Measure around the fullest part of...
£38.00
£38.00
Close
Notify me
Notify me
Penguins Hate Push-Ups Men's Pullover Hoodie
Earth
Quick Add
Close
Notify me
Notify me
Penguins Hate Push-Ups Men's Pullover Hoodie
Penguins Hate Push-Ups men's eco-friendly pullover HoodieSize Guide Centimeters XS S M L XL XXL Height 171 175 179 183 189 195 Chest 86 93 99 104 116 129 Waist 71 76 81 89 99 112 Chest: Measure all round your chest just below...
£38.00
£38.00
Close
Notify me
Notify me
Lightning Bolt Kids Long Sleeve T-Shirt
Earth
Quick Add
Close
Notify me
Notify me
Notify me
Lightning Bolt Kids Long Sleeve T-Shirt
Lightning Bolt kids eco-friendly long sle